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Abstract

BLISS (Bi-Level Integrated System Synthesis) is a decomposition optimization

method for engineering systems.  The method is characterized by the separate

optimization of a relatively few system-level variables and the optimization of potentially

numerous local variables.  Subsystem optimizations are autonomous and may be

conducted concurrently (i.e. on a multiple processor computer).  In previous versions of

BLISS, optimum sensitivity analysis and system sensitivity data were used to link the

subsystem optimization data to the system optimization.  The current work replaces both

the optimum sensitivity analysis and the system sensitivity equations by the quadratic

response surface representations using subsystem optimization results.

 The response surface methodology for BLISS achieves the desired improvements

while retaining key attributes of previous versions of BLISS: the autonomy of the black

box optimizations and the clear separation of the system variables from the potentially

numerous local variables.  The response surface formulation of BLISS was successfully

demonstrated on a simplified conceptual design of a supersonic business jet.

In addition to changes in the overall optimization methods of BLISS, subsystem

fidelity was enhanced, accompanied by the necessary modifications to the data flow

between subsystem analyses.  Documentation of these modifications that have not as yet

been tested is included as a reference for future research.
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1. Introduction

The design of a complex engineering system (e.g. an aircraft) involving a large

number of subsystems, modules, or black boxes (BB’s) inherently involves a large

number of design variables and constraints.  The optimization problem can quickly

become too large to manage efficiently, and the solution process can become extremely

expensive in a computational sense [1].  Decomposition of the problem into more

manageable subtasks enables an efficient distribution of work across disciplines.  In such

decomposition, the design variables and constraints local to a particular module are

separated from those that affect the system as a whole.  The separation and distribution of

work promotes a diverse grouping of human and computer resources, thus conforming to

current trends in parallel processing technologies and concurrent engineering.

The original formulation of Bi-Level Integrated System Synthesis, BLISS

(referred to as BLISS-98), introduced in [2] and documented in detail in [3], involved the

conceptual design of a business jet, optimized for maximum range.  During this design

analysis, simple empirical and analytical calculations were performed for each of the BB

analyses.  In [4], the test case was the same supersonic business jet but the fidelity of the

analyses was improved. Both previous BLISS formulations share the distinguishing

feature that the system objective was range while that of local optimization was a

composite function made up of the sum of BB outputs, each weighted by the system

sensitivity derivatives for that term.  Therefore, the optimum sensitivity derivatives are

used as the coupling mechanism between system and local optimizations.

The current version of BLISS (called BLISS-RS herein to denote response surface

methodology) is conceptually similar to previous versions.  However, in BLISS-RS the
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coupling between system and local optimization occurs via quadratic response surfaces

instead of an optimum sensitivity analysis.  The new framework of BLISS was

successfully tested using BB’s inherited from previous versions of BLISS.

2. BLISS-98 System Architecture

Regardless of the particular decomposition approach, the introduction of the

BLISS algorithm begins with formulation of the problem without decomposition.  A

modular system like BLISS typically optimizes three different types of design variables.

First, the system level variables Z affect at least two of the BB’s.  Secondly, the local

variables X are specific to a particular BB.   Finally, the coupling variables Y^ are output

from a BB, while Y* are coupling variables input to a BB.  A statement combining

analysis and optimization of a generic system can be written as:

Find: V              Equation 1

Where V represents the collection of all design variables in

the space {Z | X | Y* | Y^}

Minimize: F(V)

Satisfy: {g(V)} ≤ 0, for each BB

{h(V)} = 0

{c(V)} = Y* - Y^ = 0

{VL ≤ X ≤ VU}.

In equation 1, the inequalities {g} represent the behavior constraints local to a BB, and

the equalities {h} correspond to the solution of the BB governing equations (BB inner
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analysis).  The coupling equalitites {c} describe the condition that the output coming

from one BB has to match the input to another BB, for a particular coupling variable Y.

Solution of the all-in-one formulation shown above can be very arduous due to

the possibly large number of local variables.  For this reason, it is beneficial to

decompose the problem based on the types of design variables.  BLISS is such a

decomposition method in that the problem is divided into two steps:  local optimization

within each BB and the system optimization.

The original formulation of BLISS relied predominately on gradients to guide the

search toward an optimum.  It depended on system and sensitivity analyses, local

optimizations inside the BB’s, and the system optimization.  Each cycle through the

BLISS procedure improved the design in two steps; first by optimizing each BB for the

local design variables X while holding Z constant; and next, a system-level optimization

that treats Z as the design variables [3],[4].   Figure 1 depicts the BLISS-98 process.
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System Analysis
and

Sensitivity Analysis

Initialize X & Z

Opportunities for Con-
current Processing

Subsystem 1
Optimization 

and
Opt. Sensitivity Analysis

Subsystem 2
Optimization 

and
Opt. Sensitivity Analysis

Subsystem 3
Optimization 

and
Opt. Sensitivity Analysis

Subsystem 4
Optimization 

and
Opt. Sensitivity Analysis

System 
Optimization

Update 
Vatiables

Human 
Intervention

X=X0+∆XOPT

Z=Z0+ ∆ZOPT

X=X0+∆XOPT

Z=Z0+ ∆ZOPT

Figure 1.  BLISS-98 Cycle

After initialization, the BLISS-98 performs a system analysis and sensitivity

analysis in which Y and the derivatives of Y with respect to Z and X are computed.  A

linear approximation to the system objective (an element of Y – namely Range output

from the performance BB) as a function of Z and X is established using the above

derivatives.  That approximation is adopted as the objective function in BB optimizations

that follow.  In each BB, the Z and Y variables are frozen and an improvement in the

objective function is achieved by the local optimizations that use local X separately in
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each module.  This is followed by computation of the derivatives of the optimum X with

respect to the parameters Z and Y.

The second step seeks improvement for the system-level variables Z and is linked

to the first step by the derivatives of XOPT with respect to parameters Z and Y.  The

derivatives are used to extrapolate each subdomain optimum as a function of Z and Y.

The functional relation Y=Y(Z) is approximated by extrapolation based on the system

sensitivity analysis.  These steps alternate until convergence.  Note that the output of step

1 is an optimum change in the local design variables, ∆XOPT, in the presence of constant

Z, and the output of step 2 is an optimum change in system design variables, ∆ZOPT.

BLISS-98 was successfully implemented for the test case of a design of a

supersonic business jet.  A detailed description of the results obtained can be found in [4].

However, its dependence on the system analysis and derivative information proved to be

computationally costly.

2.1. BLISS-98 System Variable Flow

Figure 2 shows the general flow of data between the various modules of BLISS-

98.  The system variables (those which affect more than one black box directly) are

shown in the dashed boxes.  Variables output from a BB are specified using  (^), and

those input to a BB are designated by (*).
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WT^

WF^

L*
Θ^

L^

Θ*

L/D^

ESF*

ESF^

L/D*
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D*
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WE^

Structures

Aero

Power

Performance

(Output Range)

WT*

System Variables Z System Variables Z System Variables Z System Variables Z

Figure 2.  BLISS-98 System and Coupling Variable Flow

2.2. BLISS-98 Subsystem Analyses

The subanalysis modules included in BLISS-98, as well as the general data flow

among these modules, were used as a benchmark for BLISS-RS.  Therefore, a brief

discussion of the analysis involved in each module is presented here.

Structures BB

Figure 3 is a schematic representation of the structures black box, showing system

variable flow and intermediate operations.  The structures BB takes in all Z-level

variables excluding atmospheric parameters, along with Lift from the aerodynamics BB

and engine weight from the power BB.
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Z-variables: t/c, ARW, ΛW, SW, ST, ART, λ
Y-variables: L, WE

Displacements

WT, WF

t/c, ARW, ΛW, SW, λ, L

Wingbox model

Total weight 
estimation

WE

t/c, ARW, ΛW, SW, λ, L

Structural Weight
(based on xloc)

Lift Profile 

ELAPS
Preprocessor 

ELAPS 

Stress 
constraints

“Twist” 

WT, WF, Θ

Figure 3.  System Variable Flow for BLISS-98 Structures Black Box

The aerodynamic loads are generated within the structures module in a pre-

processor to generate the appropriate input into the structural analysis package.  The lift

loads on the wing are determined via the Shrenk approximation: a spanwise average of an

elliptical lift distribution and a trapezoidal distribution that reflects the wing chord taper,

as shown in Figure 4 [5].  This load distribution is based on half of the total aircraft

weight.  Lifting effects of the fuselage and tail are ignored.
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Figure 4.  BLISS 1998 ELAPS Lift Distribution [4]

The structures BB uses as its primary analysis tool the Fortran-77 based

Equivalent Laminated Plate Solution (ELAPS), described in [6-9].  ELAPS analyzes

trapezoidal sections, or elements, that represent whole lifting surfaces (plate segments) or

fuselages (shell segments).  For each segment, a Ritz-based method is used to minimize

strain energy, yielding polynomial equations for static deflections and internal stresses.

Although the accuracy of ELAPS has been shown to be slightly below that of

finite element codes, many beneficial aspects lend it nicely to multidisciplinary

optimization.    The main advantage lies in the fact that, compared to finite element

codes, ELAPS generates far fewer degrees of freedom, thus reducing the required

computational time and expense [10].  The input data is also much simpler and faster to

develop.  The model can consist of one segment representing an entire simple wing, or

thousands of segments of a partitioned wing.  Therefore, the adaptability of the model

makes ELAPS an attractive option for all phases of the design process.

Within the BLISS framework, stresses are analyzed along a three-segment

wingbox.  Each wingbox consists of the top and bottom sandwich panels of different
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thicknesses and sandwich webs that are identical in the front and rear of the wingbox.

The front spar of the wing box is located at 10% of the chord length and the rear spar lies

at 70% of the chord length.  Figure 5 depicts the configuration of the ELAPS model used

by BLISS.

x

y

1

2

3

Wingbox

0.1 chord

0.7 chord

Lift applied 
at 0.5 chord

x

y

1

2

3

Wingbox

0.1 chord

0.7 chord

Lift applied 
at 0.5 chord

    

Figure 5.  Wingbox configuration used by ELAPS [4]

The top and bottom panels as well as the webs have the thickness of the sandwich

face sheets (ti) and the sandwich caliper thickness (ts,i) as design variables, depicted in

Figure 6.  ELAPS models such a built-up structure by representing each face and the core

as separate elements linked in a common coordinate grid.

Figure 6.  Wingbox Cross-sectionl [4]
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The stresses calculated by ELAPS are used in formulation of a set of local

constraints.  The displacements are combined with the wingbox model to yield the value

labeled “twist” in Figure 3.   “Twist” is formulated as a change in the total lift of the wing

divided by dynamic pressure, q, having units of ft2.  Thus, it can be viewed as a change in

effective wing area due to changes in the local chord angle of attack induced by the wing

twist and bending.  Finally, the total structural weight is calculated using the structures

BB local variables.  This is combined with the engine weight to estimate the total weight

of the aircraft.  Fuel weight is estimated by empirical relationships.  

Aerodynamics BB

Z-variables: t/c, h, M, ARW, ΛW, SW, SHT, ARHT, λ
Y-variables: WT, Twist, ESF

Wing Lift (minus 
lift due to twist)

Wing CL, Tail CL

Modify baseline
drag polar

t/c, M, ARW, ΛW, SW, SHT, ARHT, λ

AWAVE
Preprocessor

AWAVE
CDmin

Trim moment
balance

LW, LHT

CDwing= CDmin+ CDLift + CDwave

CDht = f(CLht)
Wave drag

CD= CDwing

CL = CLwing+ CLht

L, D, L/D

L = WT

Figure 7 is a schematic representation of the aerodynamics black box, showing

system variable flow and intermediate operations.  The aerodynamics BB takes in all Z-
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level variables, along with total weight and twist from the structures BB,  and engine

scaling factor from the power BB.

Z-variables: t/c, h, M, ARW, ΛW, SW, SHT, ARHT, λ
Y-variables: WT, Twist, ESF

Wing Lift (minus 
lift due to twist)

Wing CL, Tail CL

Modify baseline
drag polar

t/c, M, ARW, ΛW, SW, SHT, ARHT, λ

AWAVE
Preprocessor

AWAVE
CDmin

Trim moment
balance

LW, LHT

CDwing= CDmin+ CDLift + CDwave

CDht = f(CLht)
Wave drag

CD= CDwing

CL = CLwing+ CLht

L, D, L/D

L = WT

Figure 7.  System Variable Flow  for BLISS-98 Aerodynamics Black Box

The left side of the chart shows the inputs used by the AWAVE preprocessor.

AWAVE is a simplified version of the Harris far-field wave drag program.  The AWAVE

Fortran code computes wave drag on the basis of the aircraft’s cross-sectional distribution

along the centerline, hence it requires data about the entire configuration geometry to

enable the area ruling [4].

A baseline drag polar is modified using ESF to account for wave drag of the

engine nacelle.  This is combined with the wave drag from AWAVE and drag due to lift

to yield the wing’s drag coefficient CDwing.  The drag coefficient for the horizontal tail,

CDht, is calculated from an empirical relation with CDwing.  This leads to the value of lift to
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drag ratio, L/D.  Since BLISS models only the cruise flight regime, the total weight input

set equal to total lift, L.  Total drag is easily found dividing total lift by L/D.

Power BB

The power black box is a relatively simple in form.  The drag input from the

aerodynamics BB is set equal to thrust for the cruise condition.  Engine weight is found

through an empirical formula involving drag and ESF.  SFC is determined using an

engine deck approximation model (quadratic) that takes in values for thrust and throttle

setting.

Z-variables: h, M
Y-variables: D

Thrust = Drag

Engine Deck 
approximation

Throttle setting

SFC

ESF

WE

SFC, ESF, WE

Figure 8.  System Variable Flow for BLISS-98 Power Black Box
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Performance BB

The simplest black box is the performance, or Range BB.  It is made up entirely

of the Breguet Range equation.

Z-variables: h, M
Y-variables: WT, WF, L/D, SFC

Breguet Range Equation

Range

Figure 9.  System Variable Flow for BLISS-98 Range Black Box

3. BLISS-RS

The motivation for the current research is a direct consequence of the

aforementioned shortcomings of BLISS-98.  At the same time, the primary attributes of

BLISS (clear separation of system and local design variables and the autonomy of BB’s)

need to be preserved.  Reformulating BLISS to incorporate response surfaces is a logical

choice for addressing these problems.  Since RS methods efficiently explore the entire

design space, the optimization procedure is less likely to terminate at a local optimum.

Also, the expense associated with calculating the local and system sensitivity derivatives

is eliminated in the present method.  However, this reduction in computational labor is

partially offset by the labor to generate a number of response surfaces for each BB [11].
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Figure 10 shows the general BLISS-RS procedure.  The first operation involves

initialization of the system level variables Z, local variables X, and weighting factors w.

Next, the coupling variables are initialized, either through a system analysis or an

educated guess.  After all variables are initialized, initial upper and lower bounds (LB0

and UB0) are selected for all variables.  A DOE pattern is then used to create a dispersion

of inputs to each BB.  The BB’s are optimized locally for each input, and then response

surfaces are fitted through each optimal BB output.  This collection of response surfaces

is used for system optimization, allowing for rapid extraction of coupling data.  If the

system successfully converges, a final analysis is performed to retrieve local variables X.

If convergence has not been achieved, the response surfaces are adjusted, and the system

optimization process is repeated.

System Analysis

LB0,UB0 for X, Z, w

Initial X, Y, Z, w

X0, YSA, Z0, w0

Select bounds on Y

BB1

Generate RS 
Models (local 
optimization)

Converged?

Stop

Yes

No

Initialize

BB2

BB3

BB4

Adjust RS

Optional

Concurrent

RS’s

Final Analysis

System Optimizer

Figure 10.  BLISS-RS Flowchart
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3.1. Local Optimization

Formulation of a local BB objective function can be accomplished by observing

the data flow between the various modules.  In Figure 2, the system objective is the

range, which is output from the performance BB.  The range is directly related to those

quantities entering the BB - namely total weight, fuel weight, specific fuel consumption,

and lift-to-drag ratio.  To illustrate an indirect influence of a BB output to the range,

consider the wing twist.  The twist information is sent to the aerodynamics module,

where it is used to modify the wing shape and thus alter the lift and drag that the

aerodynamics BB sends to the performance BB.

Naturally, the structures BB should be optimized such that the range is increased

as much as possible.  However, some of the outputs of the structures BB influence

performance directly, while others have an indirect effect.  Therefore, it is not clear how

much relative importance needs to be given to each output.

This problem is addressed by assigning weight factors w to each of the outputs of

a BB, then optimizing for a composite objective function.  These weight factors are

analogous to the system sensitivity derivatives used in previous versions of BLISS.  The

composite objective function is a weighted sum of the contributions of each output.  For

example, the composite objective for the structures BB would be the sum of total weight,

fuel weight, and wing twist, each multiplied by a weight factor.  Since the actual values

of w are unknown, a RS is formed in the space of {Z  | Y* | w} and the task of

determining the values of w is now left up the system optimizer.

Given vectors of system variables, coupling variables, and weight factors, a black

box can be optimized for a composite objective function, F with the satisfaction of all
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local constraints.  The result is a point F in the space {Z | Y* | w}.  It represents the best

contribution to the “synthetic” cost function the BB can make given Z, Y, and local

constraints.  The term “synthetic” is used because the system objective is not considered

at this point; instead, the function that is minimized is made up of multiple terms that

represent all outputs of the BB.  Each of these terms includes a weighting factor w that

dictates the relative importance of each response.  The formation of the BB response

surfaces (i.e. the BB optimizations) can be stated formally for BB as:

Given: Z, Y*, w              Equation 2

Find: X local to BB

Minimize: F w Yk j i= ∑ ∧

Satisfy: {h} = 0

{g} ≤ 0

{XL ≤ X ≤ XU}

Where Fk is the BB contribution to the system objective.  The constraints {h} = 0 in

equation 2 represent the analyses (ELAPS, for example).  The {g} constraints could stand

for physical limitations (material properties, dimensional tolerances, etc.).

Using a DOE-based point placement method, Z, Y*, and w are varied to yield a

locally optimized point in the space {Z | Y* | w} subject to local constraints.  Many such

points are generated to produce a cloud of points through which a quadratic response

surface can be fit.  A “surrogate” of each BB is obtained, and this approximation of each

BB analysis can then be used in a system-level optimization.
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3.2. System Optimization

Having obtained the quadratic representations of each BB, the next BLISS action

involves reading values from the quadratic RS’s to achieve an improvement in the system

objective while satisfying the coupling constraints, {c}=0.  The coupling constraints are

easily recognized by the fact that the output BBi must be equal to the corresponding input

to BBj.  For example, the total lift generated in the aero BB must equal that passed along

as an input to the structures BB.  During system optimization, a coupling variable Y^ is

not directly sent from BBi as an input to BBj.  Rather, the system optimizer proposes an

input to BBj, Y*, and a constraint is introduced in the form Y^ - Y* = 0.  In Figure 11,

the coupling constraints are shown graphically as circles where data flow channels meet.
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Power
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Performance

(Output Range)

System 

Optimizer

D*

ESF*

Θ*

WE*

L*

Θ^

WE^

ESF^

L^

D^

Figure 11.  BLISS-RS System Optimizer
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The system optimization can be formally stated as:

Given: βj for each BB             Equation 3

Find: Z,Y*, w

Maximize: F Range=

Satisfy: {c} = 0

{g} ≤ 0

{XL ≤ X ≤ XU}

In the above expression, βj are the regression coefficients for the response surface

describing the jth output of a particular BB.

4. Response Surface Methodology

The underlying goal of many types of experimentation is to correlate an output

response to a set of factors of interest to the researcher.  These relationships can be

attained by constructing a model that describes the response over various values of the

factors of interest.  These response surfaces can be generated as a graphical means of

displaying such relationships.  Response surfaces can be analyzed to determine optimum

combinations of input factors, or to explore relevant tradeoffs when multiple responses

are involved.  Figure 12 demonstrates such features.
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Figure 12.  Generic Example of a Two-input Response Surface

With regard to design of a complex engineering system, the response surface

methodology (RSM) allows the design space to be efficiently explored to determine the

values of the design variables that optimize performance characteristics subject to system

constraints [12].  RSM is used to obtain the mathematical models that approximate the

functional relationships between performance characteristics and design variables [13].

Various design of experiments techniques, such as the central composite design (CCD)

and the Box-Behnken design, are used to sample the design space efficiently [14].  With

these approaches, experiments are performed at statistically selected locations in the

design space.  The resulting data is then used to construct response surface models

through least squares regression.
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However, these, like most other experimental designs were formulated with

physical experiments in mind where the measurement variance of the response is the

main concern.  This stems from the fact that the output response of a physical system

usually exhibits some degree of variability with the experiment repeated using the same

inputs.  Conversely, computer experiments (commonly used in engineering design) are

deterministic, that is to say that there is no measurement error and no variability in

response outputs given multiple runs of the same test using the same inputs [13].

Therefore, experimental designs constructed to minimize variability of measurements

may not be the best choice for computer experiments.

4.1. Construction of Empirical Models

4.1.1. Linear Regression

In most applications of RSM, it is necessary to develop an approximation model

to the true response surface.  Approximation is necessary since, for most cases, the

underlying function that drives the response is an unknown physical mechanism [12].

Multiple regression is used to generate an empirical model.

A multiple linear regression model with n independent variables takes the form

y xi
i

n

i= + +
=

∑β β ε0
1

Equation 4

where y represents the response value, x i are the independent variables (predictor

variables or regressors), βi are unknown partial regression coefficients, and ε is the

model error.  This is a linear model because it is a linear function of the unknown
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parameters β0, β1, β2, …, βn.  This model describes a plane for two independent variables

and a hyperplane in higher dimensions for three or more independent variables.

Aany regression model that is a linear function of the regression coefficients is a

linear regression model, regardless of the shape of the surface that it generates [12].  For

example, interaction terms could be added to equation 3 (n=2) to give

y x x x x= + + + +β β β β ε0 1 1 2 2 12 1 2 . Equation 5

But if we let x3=x1x2 and β3=β12, then equation 5 becomes a standard multiple linear

regression model.  Higher order models can be generated using similar techniques.

The method of least squares is typically employed to evaluate the β’s in equation

5.  If the response is observed m times, y1, y2, …, ym,  where m>n, equation 5 can be

rewritten as

y xi j ij
j

n

i= + +
=

∑β β ε0
1

,         i=1,2,…,m Equation 6

In matrix notation, this can be written as

{y}=[X]{β}+{ε}

where
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where {y} is an m-by-1vector of observations, [X] is an m-by-n matrix of the independent

variables, {β} is an n-by-1 vector of regression coefficients, and {ε} is an m-by-1 vector

of random errors.

The least squares function is given by

{L} = εi
2 = {ε}’{ε} = ({y} − [ X  ]{β })’({y } − [ X ]{β })

i=1

m

∑

= { y}’{ y} − {β }’       [       X ]       ’   { y } − { y }’[X ]{β } + {β}’       [           X ]       ’       [         X ]{β}

= {y}’{y } − 2{β}’[X ]’{y} + {β }’       [           X ]      ’       [           X ]{β }    Equation 8

The components of the random error vector are minimized by

∂{L}

∂{β}
{ b}

= −2[X ]       ’   { y } + 2[ X ]’[X]{β } = 0

which , after simplification, becomes

[X]’[X]{b}=[X]’{y}. Equation 9

The vector {b} represents the vector of least squares estimators of {β} that

minimizes {L}.    Finally, {b} is isolated by multiplying through by the inverse of [X]’[X].

This gives

{b} = ([ X ]    ’     [ X ])−1 [ X ]’{y}. Equation 10

The fitted regression model is

                 {ˆ y } = [X]{b} .      Equation 11

In indicial notation, Equation 11 is

ˆ y i = b0 + b jx ij ,
i=1

n

∑  i=1,2,…,m Equation 12
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4.1.2. Second order models

The techniques described above are easily adapted to approximate a second order

model of the form

y x x x xi
i

n

i ii
i

n

i ij i
i j

j= + + + +
= = <

∑ ∑ ∑∑β β β β ε0
1 1

2 . Equation 13

In this case, the only difference lies in the formation of the [X] matrix.  The

minimum number of response observations needed to fit a second order model is given

by

NS
n n

=
+ +( )2 3 2
2

Equation 14

where n is the number of design variables.  Put another way, the length of y must be at

least (n2+3n+2)/2.  The first column of [X] corresponds to the β0 term in all observations,

so all entries in this column are set to unity.  The columns 2 through (n+1) correspond to

the linear terms.  Columns (n+2) through (2n+1) correspond to the pure quadratic terms

while the interaction terms are located from columns (2n+2) to ((n2+3n+2)/2).  Once the

[X] matrix is formed, the vector {b} is found in the same manner as above, and a

quadratic response surface is easily attained.

The effect that dimensionality has on the total computational labor involved in

generating response surfaces.  Since the number of points needed to fit a quadratic

increases with the number of design variables according to equation 14, efforts should be

made to condense the number of design variables whenever possible.  For a numerical

example, consider a wing load distribution that is defined by forces at 10,000 discrete

grid points on the wing surface in 2D coordinates (u,v).  The approximate force p at a



24

point located at (u,v) is given by p = p(q,u,v).  However, if p is formulated as a quadratic

polynomial in q then the number of independent q is only 6 instead of 10,000.  Then each

q would be treated as if it were a separate coupling variable in Y*, Y^.

4.2. Error Analysis of Fitted Response Surfaces

For the current research, two tests were conducted to verify the accuracy of the

fitted response surface.  The first test involved the trivial case of fitting a quadratic

response surface to a quadratic function.  The second test involved the significantly more

complex generalized Rosenbrock (Banana) function,

f x x x xi i i
i

NX

( ) ( ) ( )= − + −[ ]+
=

∑ 100 11
2 2 2

1

. Equation 15

In both test cases, the response surfaces were generated using a random point placement

scheme.

A simple error analysis was performed to quantify differences in the fitted

response surface model and the actual functions.  For both functions, response surface

function evaluations were compared to actual function evaluations using the following:

Normalized Error = (Factual-FRS)/Factual. Equation 16

The results of this error analysis are reported in Figure 13 through Figure 16, where NX

is the number of design variables, and NS is the number of points required to fit the

quadratic.  As expected, the error associated with approximating a quadratic function

with another quadratic function is smaller than the error found in the approximation to the

Banana function.
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Figure 13.  Error analysis for NX=5, NS=21

Figure 14.  Error analysis for NX=10, NS=66
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Figure 15.  Error analysis for NX=15, NS=136

Figure 16.  Error analysis for NX=20, NS=231
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5. Design Point Placement

A number of design point placement techniques were examined to determine the

most efficient way to explore the design space.  Since the BB analyses were somewhat

computationally costly (especially in the case of structures and aerodynamics), and since

there were a high number of input variables to some BB’s, traditional DOE patterns such

as central composite or Box-Behnken were impractical.  This led to the consideration and

testing of some alternative point placement schemes: Hypersphere, Monte Carlo

(random) and D-optimal Point Placement schemes.  In accordance with DOE literature,

the term design used in a DOE context refers to a particular point dispersion technique,

and should be differentiated from design in the physical sense.

5.1. Hypersphere Point Placement

The first DOE scheme investigated involved points placed uniformly on a

hypersphere in n-dimensions, coupled with an anti-bunching mechanism.  The

hypersphere placement of points reduces the likelihood of point bunching, a common

phenomenon (especially in the corner locations) of a hypercube design.  Additionally,

since the nature of the experiments performed was deterministic, the number of points

placed on the hypersphere surface was significantly lower than that of a CCD or Box-

Behnken design.  In fact, the number of points placed using the hypersphere is governed

only by the minimum number of points necessary for a second order surface fit to the

data.

The method used for generating uniformly distributed random points on the

surface of the hypersphere was adapted from [15].  To protect against the possibility of a
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point falling very closely to or on top of its nearest neighbor, an “anti-bunching”

mechanism was developed.  Overlapping points would in effect act like a single point,

therefore reducing the total number of points by one.  Since the goal here is to generate

the fewest points required to fit a quadratic surface, an overlapping set of points would

drop the number of points below the minimum required for a quadratic response surface

fit.  Additionally, the accuracy of the fitted surface is reduced when the points are

bunched together.  A complete description of the hypersphere point placement with

antibunching algorithm can be found in Appendix A.

Once implemented, the hypersphere point placement method appeared to exhibit

unacceptable biasing toward the center of the design space, especially for models of

higher dimension [16].  This can be explained by examining Figure 17 through Figure 19.
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Figure 17.  Volume of N-Dimensional Hypercube [16]
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Figure 18.  Volume of N-Dimensional Hypersphere [16]
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Figure 19.  Ratio of Hypershpere Volume to Hypercube Volume [16]

Contrary to a cube in N-dimensions, a sphere does not continually increase in

volume with increasing dimensionality.  In fact, after as little as N = 5 the volume of the

N-dimensional hypersphere actually decreases, resulting in the ratio of hypersphere

volume to hypercube volume quickly approaches zero.  One can safely deduce that the

volume of the hypersphere at high dimensionality does not effectively overlap a
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comparable hypercube volume.  Thus, the design space of interest is poorly approximated

by the hypersphere point placement scheme.  The hypersphere point placement scheme

was ultimately abandoned for these shortcomings.  A detailed formulation for the volume

of a hypersphere can be found in Appendix A.

5.2. Random Point Placement

The next point placement scheme involved a random Monte Carlo generation of

input variables to each BB.  The Matlab random number generator was used to generate a

random vector ξ, whose elements lie between 0 and 1.  Once mapped into [-1 1]

coordinates, the random vectors of inputs were used as parameters for local optimization

and formation of the response surface.

The random point placement was extremely simple to implement and showed

good dispersion of the input parameters.  However, once the response surfaces were fit

and examined, there was evidence that these quadratic models gave a poor representation

of the actual black box, especially at the edges of the design space.  The origin of this

disparity could come from two possible sources.  First, the minimum number of points

required to fit a quadratic may have simply yielded a poor fit.  Secondly, the extremities

of the response surfaces appeared not to “anchor” themselves at the end bounds of the

data.  Of course, it is impossible to plot an nth dimensional surface, so these hypotheses

are based on slicing the design space and viewing contour plots of various input

combinations.

For the reasons stated above, efforts were made to investigate the effects of using

more than the required minimum number of points for a quadratic fit.  Indeed, by

increasing the number of points, the correlation of the RS surrogate to the actual BB
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response was improved.  However, it was found through experience that reducing the

intervals over which RS’s were generated yielded better results.

5.3. D-Optimal Point Placement

To address the shortcomings of the random point placement scheme, a D-Optimal

method was considered.    The D-optimal design belongs to a class of computer generated

designs first formulated in the 1970s.  A D-optimal design is one that maximizes the

determinant of XTX. It can be shown that det(XTX) is inversely proportional to the square

of the volume of the confidence ellipsoid of the regression estimates of the linear model

[12].  The volume of this confidence region is important because it reflects how well the

set of coefficients are estimated.

The cordexch (coordinate exchange) function in Matlab’s statistics toolbox was

chosen to generate the D-optimal design.  This is an iterative algorithm that operates by

improving a starting design by making incremental changes to its elements [17].  The

increments are the individual elements of the design matrix.  cordexch requires the

user to specify the number of inputs, the number of runs or design points, and the order of

the model.  An important feature of this type of design is that the user can specify the

number of points placed, so long as that number is large enough to fit a second-order

response surface through the data.

Baseline response surfaces are critical in subsequent BLISS iterations because the

design space is reduced, then focused on the region that contains the system optimum.

Therefore, if a reduced interval does not contain the system optimum, poor results will

encompass all other iterations.  Ultimately, the baseline design that was chosen was a D-

optimal design.  This choice seemed most appropriate since it efficiently searched the
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design space with a limited number of design points.  The D-optimal design also seemed

to provide reasonable consideration to the edges of the design space – an attribute

common to CCD or Box-Behnken designs, but made possible with far fewer design

points.

Since BLISS-RS calls for the response surfaces to be fit through locally optimum

data, it was imperative that all local optimizations were successfully converged.

Therefore, a provision was implemented that allowed for the placement of a random

design point whenever a particular D-Optimal design point failed to converge

successfully.  Such random points were generated until one was found that successfully

converged.  Thus, the D-Optimal design was ultimately augmented by the placement of

randomly dispersed points

5.4. Coded and Natural Variables

A coordinate mapping is used to relate the coded variables generated by the point

placement algorithm (ranging from –1 to 1) to the natural values of the variables in the

physical problem.  Figure 20 shows how such a mapping can be used to specify the

natural coordinates in terms of their coded counterparts.
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Figure 20.  Linear mapping for Coded and Natural Variables

In equation 17, ξ  is the coded coordinate of a design point while X is the actual

value.  Notice that the high and low values for natural variables must be specified

beforehand.  These values may depend on the physical constraints of the problem or may

simply be the region of interest for the experiment (e.g. the exploration interval).
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X X

X X
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6. Interval Reduction

Once a system optimization is conducted, it is important to check the accuracy of

the response surface fit.  A simple calculation was used to compare values taken from the

response surfaces to those produced directly from the BB analyses.    First, the values {Z |

Y | w}* are found by the system optimization.  Then these values were used as BB input

parameters, and the BB’s were re-optimized.  The difference YBB*-YRS* was taken and
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normalized by YBB* to give a measure of the “goodness of fit” obtained in the quadratic

response surface model.

The measure of error due to lack of fit was used as a termination criteria.  If, at the

end of one iteration, the values YRS* and YBB* do not agree by a predetermined tolerance,

the response surfaces are reformulated by reducing the intervals around system optimal

values.

Reducing the interval sizes has the general property of improving the fit of the

response surface.  Indeed, as the intervals are reduced, the fit becomes more and more

linear.  It is desired that the new interval be centered on the anticipated optimum value,

and that the new interval makes physical sense.  Since the Y and w variables are not

subject to any clear physical limitations, their interval bounds are allowed to “drift”

across the original interval bounds.  However, the Z variables are subject to such physical

limitations so their intervals must always lie within the original interval bounds.  These

differences lead to the use of two different interval reduction methods.

Intervals on system level variables Z are reduced in such a way as to ensure the

subsequent interval would fall within the physical bounds described by the original

interval.  For example, let XLi and XHi denote the respective lower and upper limits on

the interval used to generate a response surface.  If the termination tolerance is not

satisfied, then the interval is reduced by 20% and centered on the system optimal value.

If any of the new XLi+1is less than XLi , the value is returned to XLi.  Similarly, if any of

the XHi+1 is larger than XHi the interval limit is returned to XHi.  This operation shrinks

the interval over which points are placed to generate the response surfaces.  It should be
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noted, however, that reducing the intervals in this manner does not ensure that the new

interval is centered on the optimum found in the previous iteration.

The factor by which the interval is reduced each iteration was chosen somewhat

arbitrarily.  Since the interval is reduced each iteration (without the possibility of being

increased), it is important to reduce the interval size gradually to prevent premature

convergence to an unreliable optimum

The intervals for coupling variables Y and weight factors w were not subject to

the limitation of falling within the original interval.  Therefore, the intervals are allowed

to shift solely on the basis of where the optimum was found on the previous iteration.

This carries the added benefit of centering the RS’s in the middle of the design space with

respect to Y and w, so satisfaction of the coupling constraints is always possible.

A simple algorithm was adapted from [16] for re-sizing the intervals on Z and w.

First, a factor K is defined for reducing the interval size.  This factor is not directly

applied to the current interval.  Instead, an adjustment factor A i is determined by linear

interpolation as:

A
C Opt

C Li
i i

i i

=
−
−

| |
Equation 18

where Ci is the center of the current interval, Opti is the optimum found in the current

interval, and Li is the lower value of the current interval.  The actual reduction factor can

then be found as:

R A A Ki i i= + −( )1 Equation 19

The result of this process is that the interval size will not be reduced if the optimum point

is located on a boundary, while it will be reduced by a factor of K  when the optimum

point is located at the center.
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Additionally, a history of optimum location with respect to bounds is kept.  If the

best design point hits the same bound twice, the interval is expanded by a fixed amount.

If the optimum oscillates from upper to lower bounds between iterations, the interval is

reduced by a fixed amount.

7. BLISS-RS Results

BLISS-RS was tested on the design of a supersonic business jet from a 1995

AIAA Graduate Student Design Competition.  The baseline model is shown in Figure 21

with corresponding dimensions listed in Table 1.

Figure 21.  Baseline Model of Supersonic Business Jet

Table 1.  Baseline Geometrical Variables

Variable Name Symbol Initial Low Value Initial Value Initial High Value Units
thickness ratio t/c .01 0.075 .1 --

wing aspect ratio ARW 3.5 4 6.5 --
wing sweep ΛW 40 45 70 degrees

wing surface area SW 200 400 800 ft2

tail surface area SHT 40 120 125 ft2

tail aspect ratio ARHT 3.5 4.5 5.5 --
taper ratio λ .1 0.2 .4 --
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For each BB, equation 14 was used to find the minimum number of points required for a

quadratic RS.  Table 2 lists the variables Z, Y*, and w that were input to each BB, and

the corresponding number of design points placed.  The weighting factors are labeled in

such a way as to denote the BB number immediately following w, and the output number

in parentheses.  The weighting factor of one of the outputs of each BB was held constant

(except for the performance BB since there is only one output).  This imparts relative

importance to the other weighting factors while also reducing the total number of

variables.  These were chosen as w1(1), the weighting factor for WT, w2(2), the

weighting factor for drag, and w3(2), the weighting factor for WE, since it was obvious

that minimizing these terms would have a beneficial effect on range.

Table 2.  RS Generation Data

Input Variables
BB Output

Z Y* w

Number
of

Inputs

Number of
Points (NS)

1. Structures
1. WT

2. WF

3.  Θ

t/c, ARW, ΛW,
SREF, SHT,
ARHT, λ

L, WE
w1(2)
w1(3)

11 78

2. Aero
4. L
5. D
6. L/D

t/c, h, M, ARW,
ΛW, SREF, SHT,

ARHT, λ

WT, Θ,
ESF

w2(1)
w2(3)

14 120

3.  Power
1. SCF
2. WE

3. ESF
h, M D

w3(1)
w3(3)

5 21

4. Performance
1. Range

h, M

WT,
WF,
L/D,
SFC

6 28

For simplicity, the procedure was terminated after ten iterations.  It was decided

from previous executions that this number of iterations sufficiently demonstrated the

convergence characteristics of the system without excessive run time.
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The total labor for each BB in Table 2 is NS times the number of iterations for

convergence, the latter being 10 for the current research.  If a concurrent processing

environment were used, the elapsed time for each BB would be equal to the time for one

NS generation.  Therefore, the total elapsed time to generate all RS data would be equal

to the elapsed time for the longest single BB optimization, and would scale linearly in

proportion to the above longest time.

Figure 22 through Figure 30 show the location of the optimum value for each of

the system-level variables over the 10 iterations.  Also shown are the intervals over which

the response surfaces were formed per iteration.  It is clear that by forcing all subsequent

intervals to remain inside the original interval, some of the (i+1)th intervals are not

centered on the ith optima.

Figure 22.  Optimization History for t/c
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Figure 23.  Optimization History for Altitude

Figure 24.  Optimization History for Mach Number
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Figure 25.  Optimization History for Wing Aspect Ratio

Figure 26.  Optimization History for Wing Sweep (deg)
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Figure 27.  Optimization History for Wing Area (ft2)

Figure 28.  Optimization History for Tail Surface Area
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Figure 29.  Optimization History for Tail Aspect Ratio

Figure 30.  Optimization History of Taper Ratio
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 Similarly, Figure 31 through Figure 39 show the location of the optimum value

for each of the coupling variables, along with interval size for 10 iterations.  In this case,

the intervals are allowed to “drift” across the original interval bounds, and allows the

(i+1)th interval to be centered on the ith optimum in all cases.  This is a helpful

characteristic when it comes to satisfying the coupling constraints {c}=0.  The figures

also demonstrate the workings of the algorithm given in equations 18 and 19.  Intervals

are reduced more aggressively if the optimum falls at the center of the interval (a factor

of 3 was used here).  The intervals were expanded by a factor of two if the optimum

landed at a boundary for two consecutive iterations, and the interval was reduced by a

factor of two if oscillation occurred.

Figure 31.  Optimization History for Total Aircraft Weight



44

Figure 32.  Optimization History for Fuel Weight

Figure 33.  Optimization History of “Twist”
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Figure 34.  Optimization History for Lift

Figure 35.  Optimization History for Drag
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Figure 36.  Optimization History for L/D

Figure 37.  Optimization History for SFC
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Figure 38.  Optimization History for Engine Weight
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Figure 39.  Optimization History for ESF

The weighting factors are all plotted in Figure 40 for direct comparison.  The

values that the weighting factors converge to reflect the influence they have on the

system objective.  For instance, the weighting factor for lift, w2(1), is about  –1,

indicating that lift is being maximized (for the standard that positive numbers are

minimized).  Likewise, the weighting factor for SFC, w3(1), is 0.5, meaning SFC is being

minimized.  Both results are intuitively correct.

Figure 40 also shows that the weighting factors for fuel weight, w1(2), and for

ESF, w3(3), have not completely converged.  This is clearly a product of the termination

criteria chosen.
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The optimized ranges found by the RS representations and BB’s for each iteration

are shown in Figure 41.  In general, the response surface values closely resemble those

obtained from the actual black box.  The range of an actual aircraft would be substantially

lower than those in shown in Figure 41.  This is expected since constraints such as

takeoff run length, climb rate requirements, engine-out conditions, and several aeroelastic

limitations were not considered.
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In order to assess the validity of the response surface models, the system level variables

obtained in system optimization were used to re-optimize each BB.  The corresponding

outputs YBB from this operation were compared to the YRS obtained from the system

optimizer.  This comparison can be seen in Figure 42.
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Figure 42.  Plot of Residuals for Coupling Constraints

The data in Figure 42 were all normalized by the BB value in order to make a more direct

comparison for the various coupling variables.  As this graph shows, the interval

shrinking technique does (in general) improve the accuracy of the response surface

model.  However, use of this method does not insure that each subsequent iteration will

yield a better fit than the one before it.

It is important to point out here that the comparison of the RS values to the BB

values in Figure 42 is somewhat limited in scope.  Ideally, the local variables should be

represented by response surfaces of their own in order to show their behavior over the

specified input intervals.  One could then pull the information regarding local variables at

the system optimum from these RS’s instead of re-optimizing locally.  Unfortunately, this

would require a very large amount of data to be carried along through the BLISS process,

and was therefore not performed.
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Figure 43 through Figure 45 show the optimization histories for some local variables for

structures, aerodynamics, and power black boxes, respectively.  In Figure 43, the skin

caliper thickness ts1 through ts3 are defined via Figure 6.  The thickness are labeled

“inner” to denote the spanwise location of the panels (inboard, or closest to the fuselage

in this case).  This figure also indicates, the values for ts1 (inner) and ts3 (inner) overlap.

Additionally, the values for all three local variables shown do not deviate much from the

initial values.  Both anomalies can be attributed to the relatively relaxed termination

criteria chosen for the structures BB.  This was done to speed up the construction of

response surfaces.
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8. Black Box Fidelity Improvements

Since BLISS is modular by nature, the analyses included within each of the black

boxes may be readily replaced.  Indeed, the number of black boxes is also problem

dependent.  It is in this capacity that considerable efforts have been undertaken to

demonstrate such capabilities.   The following sections describe auxiliary work gone into

BLISS-RS to improve the fidelity of submodule analyses.  However, it should be noted

that the results presented earlier do not pertain to these improvements.

  The most prominent improvement is the inclusion of a computational fluid

dynamics package for aerodynamic analysis.  This improved aerodynamics BB facilitates

changes within the inner workings of the structures BB.  The power and performance

black boxes remained exactly the same as in the previous version of BLISS, aside from

some trivial input/output modifications.

Improved Aerodynamics Black Box

The fidelity of the aerodynamics black box was improved by employing a

computational fluid dynamics (CFD) code, coupled with grid-morphing software.  Since

the RS methodology calls for an optimization of local variables at each of the proposed

design points and optimization of any local variables would be extremely expensive

computationally, it was decided that all local variables in the aerodynamics BB be

eliminated.  Thus the new aerodynamics BB is purely an analytical tool for finding the

desired aerodynamic loads, namely Lift and Drag.

The CFD code chosen for this task was CFL3D version 6.0, short for

Computational Fluids Laboratory 3-Dimensional flow solver.  CFL3D was originally
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developed at by the Computational Fluids Laboratory at NASA Langley Research Center

in the early 1980’s [19].

CFL3D solves the time-dependent conservation law form of the Reynolds-

averaged Navier-Stokes equations.  Some of the features of CFL3D are outlined below:

• Semi-discrete finite volume approach for special discretization

• Up-wind biasing for convective and pressure terms

• Central differencing for shear stress and heat transfer terms

• Implicit time advancement with ability to solve for steady or unsteady flows

• Multigrid and mesh sequencing available for convergence acceleration

• Multiple turbulence models available for 0,1,or 2-equation models

• Multiple-block toloplogies possible through 1-1 blocking, patching, overlapping,

and embedding.

CFL3D does not include any grid-generation software, so it was necessary to

obtain the appropriate grid prior to execution.  The baseline grid was generated at

GEOLAB (Geometry Laboratory) at NASA Langely Research Center.  The lab provides

production and consultation services for computer aided design and numerical grid

generation for various research fields.  The baseline model chosen for BLISS-RS was that

of the supersonic business jet used in previous BLISS work.  The particular geometric

parameters were obtained from the results of BLISS-98 optimization.

Since each point on a RS represents a unique design, a unique surface and volume

grid must be used for analysis at that point.  Therefore, instead of reproducing the grid

each time a new design was proposed, a grid-morphing program was used.  The

MASSOUD algorithm [20] chosen for this task.  MASSOUD (Multidisciplinary
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Aero/Struc Shape Optimization Using Deformation is a geometry parameterization tool

that utilizes soft object animation algorithms used in computer graphics.  It parameterizes

the shape perturbations rather than the geometry itself, and relates grid deformation to

aerodynamics shape design variables such as thickness, camber, twist, shear, and

planform.  The morphing capabilities available through MASSOUD are independent of

grid topology, making it suitable for a variety of analysis codes such as CFD and CSM.

Sensitivity derivatives are available in this software, and can be used for gradient-guided

optimization. This algorithm is suitable for both low-fidelity (e.g., linear aerodynamics

and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear

CFD and detailed CSM modeling) [20].  A schematic of the data flow in this BB can be

seen in Figure 46 below.
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Figure 46.  System Variable Flow  for New BLISS-RS Aero BB

Figure 46 also shows the output values for LHT and LW, lift of the horizontal tail

and wing, respectively.  These values are used in a trim constraint during system

optimization.  Previous versions of BLISS performed this operation within the

aerodynamics BB.

Improved Structures Black Box

In the upgraded version of BLISS, the actual lift distribution is passed along to the

structures BB from the Aero BB via CFD analysis.  The six coefficients β are used to

describe the quadratic representation of the lift distribution.  This is an improvement to

the previous assumed elliptical /trapezoidal (Shrenk Approximation) distribution, thus the
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accuracy of this distribution is greatly enhanced.  Figure 47 shows the system variable

flow for the improved structures BB.  The notion of twist used in previous discussions

has been abandoned here in favor of dA and dB, the vertical displacement at the wing tip

leading edge and trailing edge, respectively.

Z-variables: t/c, AR, Λ, S, λ
Y-variables: WE, β(1:6)

ELAPS

-Displacements
-Stresses WT, WF

t/c, AR, Λ, S, λ

Generate tail shape

Tailspan, SHT

Emperical tail 
weight estimation

Total weight 
estimation

WE

t/c, AR, Λ, S, λ, β(1:6)

dA, dB

Structural 
Weight

Figure 47.  System Variable Flow  for New BLISS-RS structures BB

Another important modification to the structures BB is the implementation of an

anti-flutter constraint during local optimization.  The initial formulation of the flutter

constraint (explained in detail in Appendix B) is based on the ratio of deformed wing

bending moment, MDR, to the rigid wing root bending moment, MRR.  However, a higher-

fidelity flutter calculation is possible using ELAPS.
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The changes to the aerodynamics and structures modules have an effect on the

overall data flow of the system. Figure 48 shows the new data flow associated with

implementation of the new aerodynamics and structures BB’s.  Likewise, Figure 49

diagrams the system optimization process associated with the new BB’s.
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Figure 48.  New BLISS-RS System Data Flow
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Figure 49.  New BLISS RS System Optimizer

9. Conclusions and Future Work

The results presented herein reflect a change in the overall BLISS process: a shift

from gradient-guided optimization methods to RSM based schemes.  BLISS-RS allows

autonomous, distributed, and concurrent optimization in subsystems (disciplines) off-line.

The method decouples local variables and constraints from the system level variables and

coupling constraints, and optimizes the system for its objective and satisfies couplings.   

The response surface methodology was successfully implemented and tested on a

conceptual aircraft design.  By demonstrating the ability to use response surfaces in the

BLISS-RS procedure, a number of possible improvements and follow-up work have

emerged.

First, the logical next step in the evolution of BLISS would be study its

performance in a parallel-processing environment.  The real gains to be made through
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response surface methods are offset by the computational labor involved to create the

RS’s.  Since the RS’s generated in the current research were done serially, these gains

were difficult to assess.

The modular nature of BLISS-RS easily allows for improvements to the analyses

local to each BB.  Indeed, improvement in the fidelity of the black boxes was

demonstrated in BLISS-98 [1-4], and again in BLISS-RS with the improved

aerodynamics BB.  A possible extension of this idea would be to increase the number of

BB’s, therefore potentially increasing the number of all levels of design variables.

Prospective new BB’s could include a stability and control analysis or even cost analysis.

The process could also be adapted to reflect a more realistic design, for example by

considering the entire flight envelope, or by more specific modeling.  Therefore, BLISS-

RS could be used in more advanced stages of the design process.

Throughout the course of the research, many trial and error based decisions were

conducted so there remain many possibilities for further investigation into “the road not

taken”.  The choice of point placement schemes was based primarily on judgmental

criteria.  Therefore, a definitive study should be conducted to find the best scheme for

accurate results, and one that is practical to implement.  The predominant case in this

regard is the manner in which response surfaces are created from one iteration to the next.

The BLISS-RS process can be made more efficient by using data points from previous

iterations circumventing the need to produce a full set of points each iteration.  This

problem was addressed in the current research, but the dimensionality of the problem

limited the number of points that could be retained, while still giving a set of points that

fell within the interval of the next iteration.



62

Lastly, the user interface of BLISS is a prime candidate for improvement.  As the

program stands, user defined inputs are inserted directly into the source code.  This

presents many challenges (experienced firsthand by the author) when trying to make

small changes in baseline aircraft configuration, BB analyses, termination tolerances, etc.

It will be essential that the interface becomes more user-friendly if BLISS-RS is to be

used in actual design applications.
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Appendix A. Hypersphere Point Placement

This method generates uniformly distributed random points on the surface of the

hypersphere, then employs an antibunching mechanism.  A brief synopsis of the

algorithm follows from [11] and [15]:

1). Generate normally distributed deviates X X Xn1 2, ,...,  with mean zero and variance

one.

2).  Obtain coordinates of points on the surface of the sphere by dividing each deviate

by the root sum of the squares of the deviates:

X

r

X

r

X

r
n1 2, ,...,









 where r X X Xn= + + +1

2
2
2 2... . Equation A1

Since the distribution function for the point X X Xn1 2, ,...,( ) has a density that only depends

on the distance from the origin, it has uniform distribution when projected onto the

surface of the sphere.

To protect against the possibility of a point falling very closely to or on top of its

nearest neighbor, an “anti-bunching” mechanism was developed.  Overlapping points

would in effect act like a single point, therefore reducing the total number of points by

one.  Since the goal here is to generate the fewest points required to fit a quadratic

surface, an overlapping set of points would drop the number of points below the

minimum (NS).  Additionally, the accuracy of the fitted surface is reduced when the

points are bunched together.
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The solution for this problem is achieved by checking the distance of a point

generated to its nearest neighbor.  The distance between two points, A and B can be

shown as

dist XA XBAB i i
i

NX

= −
=

∑( )
1

  Equation A2

where XA and XB are the vectors containing the NX-coordinates of points A and B,

respectively.  If the points falls too close to previous points, it is rejected and another

point is generated until one meets a certain criteria.

 To introduce the notion of an anti-bunching criterion, suppose an N-dimensional

coordinate system was partitioned into intervals (lower bound through upper bound) on

each axis.    After normalizing the lengths of the intervals to one, each is then divided into

D divisions of equal length,

S
D

=
1

Equation A3

The quantity S can be thought of as a measure of distance from a point to its nearest

neighbor expressed in units of the normalized interval.  It may also be regarded as a

measure of the mesh density.  If each division on every axis were sampled at its center,

the number of points generated would be NDNP = .  After inverting this expression, the

corresponding mesh density is

S NP N=
−
1

. Equation A4

To prevent bunching, the distance between points can be limited to a 1/h fraction of S, or

     dist
S

hAB ≥                         Equation A5
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Where h is a user-defined input, the anti-bunching factor.  From this definition, a high

anti-bunching factor will result in more bunching of points whereas lowering the value of

h makes the point dispersion approach an even distribution, as shown in figures A1

through A4.  Also note, a single center point has been generated at the origin in each

case.

Figure A1.  Distribution of 50 points on a two-dimensional hypersphere with h=100.
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Figure A2.  Distribution of 50 points on a two-dimensional hypersphere with h=10.

Figure A3.  Distribution of 50 points on a two-dimensional hypersphere with h=5.
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Figure A4.  Distribution of 50 points on a two-dimensional hypersphere with h=1.5.

As expected, a lower anti-bunching factor results in a more uniform distribution.  It is

important to note that the anti-bunching factor must not fall below the value that gives a

truly even distribution.  If this were the case, all subsequent points generated would

violate the distance criterion of equation A5.  For the case set of 50 points given above

(49 on the surface and one center run), this critical value is hcrit=1.112.

The volume of a hypersphere can be found as from equation A6:

Volume
n

r

n

n=
+











π 2

2
1Γ

Equation A6

where n is the number of independent variables, and

Γ n x e dxn x( ) = − −
∞

∫ 1

0

Equation A7

or
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Γ( )
!

n
n

r

n

n= 









π 2

2

 if n even  Equation A8

Γ( )
!

n
n

r

n

n= 









π 2

2

 if n odd.  Equation A9
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Appendix B.   Empirical Flutter Constraint Formulation

The following formulation of an empirical flutter constraint was adapted from

[11].  The method limits excessive flutter by comparing the root bending moment of a

twisted wing to that of a rigid wing.  A more realistic formulation that includes vibration

frequency of the wing is also included.

To introduce the notion of a twist constraint, consider the change in local angle of

attack, ∆α, of a spanwise station along the wing:

∆α =
−( )dA dB

cAB
Equation B1

where dA and dB are the z-displacements of points A and B (leading and trailing edge

locations, respectively) and ABc  is the chord length measured from point A to point B.

The aerodynamics module uses ∆α to modify the wing shape and to compute the

resulting changes in aerodynamic loads.  Suppose now that the pressure distribution

along the span of the wing is given, either by assuming a distribution (as was done in

BLISS 98) or by computing the distribution via CFD.  The total pressure distribution is

given by

F x a f xav ( ) ( )= ⋅        Equation B2

where f(x) is the pressure distribution, and a is a constant that controls the lift magnitude.

However, the lift given by equation B2 is valid only for rigid wings.  Therefore, we must

account for wing bending and twisting so that a chord at location x rotates per equation
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B1.  This rotation results in altering the local angle of attack.  The effect of ∆α on total

lift is

∆
∆

L x a f x
x

r

( ) ( )
( )

= ⋅
α
α

           Equation B3

where ∆α is given for the local chord in equation B3 and αr is the angle of attack of the

root chord.  Now the total lift can be determined as an integrated sum of the pressure

distribution and the change in lift:

L a f x C x dx
r

= ⋅ +








∫ ( ) ( )

∆α
α

       Equation B4

where C(x) represents the wing geometry (root chord, tip chord, and span for a

trapezoidal wing).  In equation B4, the integration extends from root to tip.  This

integrated pressure must match the required lift L0 input to the structures BB from the

system optimizer so that

a
L

f x C x dx
r

=

+








∫

0

( ) ( )
∆α
α

 Equation B5

A trade off between structural weight and drag occurs because the wing loses

some angle of attack to ∆α.  The loss in angle of attack intensifies outboard and the

related loss in lift (∆L in equation B3) results in a decrease in wing bending moment

since the center of lift moves inboard.  The reduction of wing bending moment is an

advantage in terms of structural weight, but results in increased aerodynamic drag since

the lift distribution departs from the minimum drag, elliptical distribution.  However, for

a transport aircraft, the drag penalty can be ignored if the wing is built to a jig shape that

incorporates the negative twist anticipated at 1 g flight.  In 1 g flight, the wing flexes to
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an ideal shape as if it were rigid, but still relieves the bending load in a pull-up maneuver.

Hence, we can exploit the wing flexing as a natural mechanism to reduce the pull-up

bending and thus save weight to improve range.

The deformed wing root bending moment can be defined as

M a f x C x xdxDR
r

= ⋅ ⋅ +








∫ ( ) ( )

∆α
α

 Equation B6

Similarly, a rigid wing root bending moment can be written as

M a f x C x xdxRR = ⋅ ⋅∫ ( ) ( ) Equation B7

Since ∆α <0 for an aft-swept wing, r can be introduced as

r
M

M
DR

RR

= <1 Equation B8

When the value of r is less than unity, the wing is relieved of the bending load.  For local

optimization, r is used as a constraint to prevent excessive flutter.  For example, the

simplest form of the constraint would be a bound on r:

r < r~  Equation B9

where r~ could be a values such as 0.9, it which case 10% bending relief would be

allowed.  A better approximation can be formulated based on the formulas of vibration

frequency.  The formulas for bending and torsional frequency are given in equations B10

and B11, respectively.

ωb
bP
k

m
= 1 Equation B10
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ω t = P2

k t

J
Equation B11

where P1 and P2 are constants of proportionality, kb is the bending stiffness corresponding

to the wing tip unit torque, kt is the torsion stiffness corresponding to the wing tip unit

torque, m is wing structural mass, and J is the wing moment of inertia associated with

rotation about the elastic axis.  J can be expressed in terms of m and radius of gyration, R,

by:

J = mR2  Equation B12

If the wing is free of flutter at some reference state (designated with a ~), limits can be set

around ωb and ωt (ub and ut) so that

g =
ωb

˜ ω b
− 1− ub( ) < 0  Equation B13

g = 1− ub( ) −
ωb

˜ ω b
< 0  Equation B14

   These constraints keep ωb within ± ub of ˜ ω b .  The actual value of ub is somewhat

arbitrary, for example, 0.1.  Similar constraints can be generated for ωt.  The reference

state ~ can be determined by executing BLISS with the constraint in equation B9.  Then

the constraint given in equation B9 may be replaced with equations B13 and B14.  Note

that in equations B13 and B14, ms, kb, and kt are the only items that need to be computed

since P1, P2, and R cancel out (under a simplifying assumption that they remain

approximately constant).
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Appendix C.   Data Tables

Variable 0 1 2 3 4 5 6 7 8 9 10
t1(inner) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
t1(middle) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
t1(outer) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
t2(inner) 2.00 1.9998 1.9995 1.9997 1.9999 1.9998 1.9998 1.9998 1.9998 1.9998 1.9998
t2(middle) 2.00 1.9998 1.9995 1.9997 1.9999 1.9998 1.9998 1.9998 1.9998 1.9998 1.9998
t2(outer) 2.00 1.9998 1.9995 1.9997 1.9999 1.9998 1.9998 1.9998 1.9998 1.9998 1.9998
t3(inner) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
t3(middle) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
t3(outer) 2.00 1.9978 1.9952 1.9948 1.9976 1.9955 1.9947 1.9946 1.9942 1.9939 1.9937
ts1(Inner) 4.00 3.9703 4.0242 4.1032 3.9814 3.8414 3.7784 3.8343 3.8060 3.8197 3.8404
ts1(middle) 4.00 3.9760 4.0170 4.0716 3.9867 3.8884 3.8442 3.8833 3.8634 3.8730 3.8867
ts1(outer) 4.00 3.9818 4.0097 4.0399 3.9920 3.9354 3.9100 3.9323 3.9209 3.9263 3.9330
ts2(Inner) 4.00 3.9999 3.9998 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999
ts2(middle) 4.00 3.9999 3.9998 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999
ts2(outer) 4.00 3.9999 3.9998 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999
ts3(Inner) 4.00 3.9703 4.0242 4.1032 3.9814 3.8414 3.7784 3.8343 3.8060 3.8197 3.8404
ts3(middle) 4.00 3.9760 4.0170 4.0716 3.9867 3.8884 3.8442 3.8833 3.8634 3.8730 3.8867
ts3(outer) 4.00 3.9818 4.0097 4.0399 3.9920 3.9354 3.9100 3.9323 3.9209 3.9263 3.9330
Λht (deg) 60 70.00 70.00 70.00 70.00 62.19 70.00 67.36 70.00 70.00 70.00
Lw (%MAC) 10 1.00 5.69 5.68 1.00 1.00 4.33 2.75 4.33 4.33 1.00
Lht (%MAC) 250 212.64 350.00 350.00 211.53 266.82 350.00 350.00 350.00 350.00 350.00
T (%) 35 21.17 31.39 25.22 22.76 21.97 20.76 20.21 20.69 20.64 20.62

Iteration Number

Figure C1.  BLISS-RS Results for Local Variables

Variable Initial 1 2 3 4 5 6 7 8 9 10
t/c 0.08 0.10 0.10 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03
h (ft) 55000 60000.00 54946.99 60000.00 60000.00 60000.00 60000.00 60000.00 60000.00 59650.05 60000.00
M 1.8 1.69 1.78 1.83 1.75 1.72 1.67 1.65 1.67 1.65 1.66
AR wing 4 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.57 3.50 3.73
Λw (deg) 45 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.75 40.53 40.00
Sref (ft^2) 400 200.00 446.58 481.69 442.72 418.50 489.69 495.28 534.80 564.84 578.08
Sht (ft^2) 120 95.64 69.76 83.31 101.24 114.69 124.77 109.87 115.54 111.29 108.10
AR ht 4.5 4.27 4.69 4.23 4.65 4.96 5.07 4.89 5.02 4.92 4.85
taper ratio 0.2 0.40 0.18 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11

Iteration Number

Figure C2.  BLISS-RS Results for System Variables

Variable Initial 1 2 3 4 5 6 7 8 9 10
Wt (lb) 33278.12 34767.72 37277.26 35120.17 33034.16 31994.33 31974.33 31728.41 31508.81 31436.23 31342.34
Wf (lb) 15109.47 18886.84 22664.21 19587.40 17274.85 16574.57 16707.70 16376.87 16046.05 16000.85 15888.08
Θ (ft^2) 6.92 6.40 6.28 6.55 6.28 6.41 6.34 6.32 6.29 6.32 6.30
L (lb) 33278.12 34767.75 37277.22 35120.13 33034.19 31994.30 31974.30 31728.38 31508.78 31436.19 31342.37
D (lb) 8701.50 7272.81 5982.93 4693.05 4256.50 3780.13 3383.76 3495.47 3462.84 3488.63 3486.77
L/D 3.82 4.78 5.74 7.48 5.96 7.40 7.86 8.23 8.27 8.39 8.51
SFC 1.15 1.01 1.15 1.14 1.09 1.11 1.10 1.08 1.10 1.09 1.09
We (lb) 7284.91 5463.68 3793.06 4643.03 4866.27 4533.20 4258.10 4382.89 4447.87 4384.30 4397.49
ESF 1.00 0.63 0.47 0.54 0.57 0.53 0.50 0.51 0.53 0.52 0.52

Iteration Number

Figure C3.  BLISS-RS Results for Coupling Variables




